
J .  Fluid Mech. (1981), vol. 102, pp. 101-126 

Printed in Great Brituin 

101 

A numerical and experimental investigation of the 
stability of spiral Poiseuille flow 

By DONALD I. TAKEUCHIt AND 
DANIEL F. JANKOWSKI 

Department of Mechanical and Energy Systems Engineering, 
Arizona State University, Tempe, Arizona 86281 

(Received 6 June 1979 and in revised form 23 April 1980) 

The linear stability of the spiral motion induced between concentric cylinders by an 
axial pressure gradient and independent cylinder rotation is studied numerically and 
experimentally for a wide-gap geometry. A three-dimensional disturbance is con- 
sidered. Linear stability limits in the form of Taylor numbers TaL are computed for 
the rotation ratios y = 0, 0.2, and - 0.5 and for values of the axial Reynolds number 
Re up to 100. Depending on the values of p and Re, the disturbance which corresponds 
to TaL can have a toroidal vortex structure or a spiral form. Aluminium-flake flow 
visualizationis used todetermine conditionsfor the onset of a secondary motion and its 
structure at finite amplitude. The experimental results agree with the predicted values 
of TaL for y 2 0, and low Reynolds number. For other cases inwhichagreement isonly 
fair, apparatus length is shown to be a contributing influence. The comparison between 
experimental and predicted wave forms shows good agreement in overall trends. 

1. Introduction 
The hydrodynamic stability problems for circular Couette flow and various parallel 

shear flows (Poiseuille flows) have received considerable attention in the literature. 
The various differences between the theoretical and experimental stability charac- 
teristics of these flows can be traced to the operative mechanism for instability. For 
circular Couette flow, the curved streamlines give rise to a centrifugal instability 
while for parallel shear flows, instability is due to viscosity. If an axial pressure gradient 
is imposed on the fluid motion between concentric, rotating cylinders, the resulting 
spiral Poiseuille flow$, a superposition of Poiseuille flow in an annulus and circular 
Couette flow, is subject to both mechanisms. By appropriate selection of the flow 
parameters, the relative importance of the mechanisms can be changed, yielding a 
spectrum of interesting stability problems. Moreover, the stability characteristics of 
such a spiral flow have important implications in several applications, e.g. journal 
bearing lubrication and cooling of rotating machinery. 

The externally controllable parameters necessary to characterize spiral Poiseuille 
flow are conveniently chosen as the radius ratio of the annulus 7 = a/b,  an axial 
Reynolds number Ke = U j ( h  -u ) / v ,  a Taylor number (rotational Reynolds number) 
To = ill (b  - u)”v, and the ratio of the angular speeds of the cylinders y = O,/Q,; 

t 1’rc:sc:nt addrcw : AilCoscwch Manufacturing Company, Phoenix, Arizona. 
1 ‘ h o  terminology 1% duo to Joseph (1976, 11. 160) who lists othcr cxarnplcs of spiral flow. 
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here a, b are the radii of the inner and outer cylinders with angular speeds R,, Q,, 
respectively, ;iij is the mean axial speed, and v is the kinematic viscosity of the fluid. 
With the stability of circular Couette flow as a base, the goal of a linear stability 
analysis is the smallest value of the Taylor number Ta, = Ta, (p, Re, 7) such that, 
for Ta  > Ta,, the basic flow is unstable relative to infinitesimal disturbances. In  order 
to insure that the most unstable disturbance is, in fact, considered, the class of 
disturbances allowed in the stability problem must not be unduly restricted. For 
circular Couette flow, it is well-known that the consequence of linear instability is the 
appearance of a steady finite-amplitude secondary motion consisting of toroidal (axi- 
symmetric) vorticest distributed periodically along the axis of the cylinders. Hence, 
at least for small Re, it is natural to consider an axisymmetric disturbance. This 
assumption, together with the restriction to a narrow gap(7+ l ) ,  were used in the 
analytical studies by Chandrasekhar (1960,1962), DiPrima (1960), Krueger & DiPrima 
(1964), Datta (19654, and Elliot (1973). The restriction to a narrow gap was relaxed 
by Hasoon & Martin (1977), who considered flows with Reynolds numbers as high as 
1000. Hasoon & Martin question the use of a parabolic form for the axial velocity 
profile in the narrow gap case and advocate the use of an averaged axial velocity 
profile in the stability problem. A careful discussion of these papers, and specifically 
the points raised by Hasoon & Martin, is provided by DiPrima & Pridor (1979), whose 
calculations dispute the conclusions of Hasoon & Martin. 

A general conclusion that can be drawn from the available analytical results on the 
axisymmetric problem is that Ta, increases monotonically with Re, that is, an axial 
flow stabilizes circular Couette flow. However, it is clear that such a stabilizing effect 
cannot continue indefinitely, for at  large enough Re, the viscous mechanism must lead 
toinstability even without rotation (Mott & Joseph 1968). This idea has been exploited 
by Hughes & Reid (1968), who, for a narrow gap and an axisymmetric disturbance, 
generalized the asymptotic methods associated with the Orr-Sommerfeld equation of 
viscous instability theory. 

The first treatment of the stability problem with a general (non-axisymmetric) 
disturbance is the recent numerical study for an arbitrary gap by Chung & Astill 
(1977). In this general case, the stability analysis requires two wavenumbers: the 
(usual) axial wavenumber a introduced by the axial periodicity of the disturbance and 
an azimuthal wavenumber n, necessarily an integer, introduced by the tangential 
variation of the disturbance. The linear stability limit is then found by determining 
the minimum on the family of neutrd stability curves generated as a and n vary over 
the proper ranges. In  this regard, the minimization process used by Chung & Astill 
is difficult to follow and includes the assumption that TaL increases monotonically 
with Re for all n. There is no theoretical justification for this assumption SO that the 
treatment of the problem with a general disturbance must be regarded as incomplete. 
Some additional comments on the minimization process used by Chung & Astill are 
provided by DiPrima & Pridor (1979). 

The most complete experiments on the stability of spiral Poiseuille flow are those 
of Snyder (1962, 1965) for 7 = 0.95 and 0.96. They include observations of the wave- 
numbers near the onsat-Sf 1nst;abiiity and clearly show that toroidal vortices (n = 0 )  
are replaced by spiral vortices (n # 0) for Re greater than about 15 for p = 0. Experi- 

f This is not necessarily so for ,u < 0 (Krueger, Gross & DiPrima 1966). 
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ments by Schwarz et al. (1964) for 7 = 0.95 and Nagib (1972) and Mavec (1973) for 
7 = 0.77 concentrate on the onset of instability, but also include observations on 
whether the vortices are toroidal or spiral. The experiments by Gravas & Martin 
(1978) are concerned solely with the onset of instability. 

The experimental observations for circular Couette flow have now been explained 
by nonlinear theory (e.g. Davey 1962). This analysis establishes that an equilibrium 
configuration with waveform predicted by the linear theory is the consequence of 
linear instability, Comparisons of theoretical and experimental results on the stability 
of spiral Poiseuille flow assume (at least tacitly) a similar equilibrium behaviour 
although no supporting analysis exists. Once this assumption is made the most 
satisfying situation occurs when agreement is achieved both on the onset of instability 
and the corresponding wavenumbers. So long as a toroidal waveform is observed 
experimentally there is good agreement between TaL and the onset of instability for 
a narrow gap; however, when the wave form assumes a spiral form, the axisymmetric 
predictions for Ta, lie above? the corresponding experimental results as do the non- 
axisymmetric predictions of Chung & Astill (1977) (see figures 3 and 4 in their paper). 
The pattern is similar for wavenumbers: agreement is reasonable only if a toroidal 
disturbance is meaningful. The non-axisymmetric wavenumbers of Chung & Astill 
do not agree with the experimental results of Snyder (1962,1966). Better comparisons 
may be possible with a complete treatment of the general stability problem. 

The present work is concerned with a numerical and experimental investigation of 
the linear stability of spiral Poiseuille flow in a wide-gap annulus. The theoretical 
disturbance is allowed to be three-dimensional, with the proper wavenumbers deter- 
mined by their correspondence to the minima on numerically generated neutral 
stability curves. Flow visualization is used to determine the conditions for the onset of 
a secondary motion and its structure at  finite amplitude. The predicted values of TaL 
and the corresponding waveform are compared to the experimental results. Reasons 
are suggested to explain the nature of the comparison. 

2. Problem formulation and solution method 
2.1. Basic jlow 

The flow under consideration is the steady, fully-developed flow of an incompressible, 
Newtonian fluid in the annulus formed by rotating concentric cylinders. If (&,, V,, V,) 
denote the velocity components in the (R, 0 , Z )  directions and P* denotes the pressure, 
the basic flow is an elementary solution of the Navier-Stokes system of the form 

and 

After imposing no-slip conditions at the surfaces of the cylinders, it  is readily shown 
that 

V*(R) = AR+ BIR, Pa) 

( 2 6 , ~ )  

t Agrccmont can be iinprovccl by using an avcraged uxinl vclocit,y profile in the stiibility 
prohloni (800, r g ,  figiitv 2 in Snyder 19G2). but this i t ~ i ~ ~ t ~ ~ ~ ~ ~ ~ t ~ i t ~ t i t  is clrarly nrtificinl. 
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where p is the fluid density. The solution (2) represents circular Couette flow while the 
solution (3) is t,he Poisenille flow in an annulus. 

2.2 .  Linear stnbility analysis 

Following the usual linear stability analysis, the disturbed state is assumed to consist 
of the superposition of the basic flow and time-dependent infinitesimal disturbance 
qiiant,ities. Thus the disturbed velocity field is 

(ur,  u g ,  us) = (u', V ( r )  + d ,  W ( r )  + to'), (4) 

where (ur, uo, u;) are dimensionless velocity components in the (r ,  19, z )  directions, V ( r )  
and W ( r )  are the dimensionless forms of (2a) and (3), and prime denotes a disturbance. 
The characteristic length and speed used in the non-dimensionalization are b -a  and @, 
respectively. If the disturbed velocity field and the corresponding pressure field are 
substituted into the Navier-Stokes system and products of infinitesimal quantities 
are neglected, the result is a set of linear disturbance equations. An examinationof 
these equations shows that they allow a solution in normal-mode form 

(u', v', w',p') = [ a ( r ) ,  v(r ) ,  w(r ) ,p ( r ) ]  e;[a(z-rt)+ngl, (5) 

in which t is the diniensionless time, p' is the pressure disturbance, and u(r), v(r) ,  uj(r) 
andp(r) are complex amplitude functions. The axial wavenuinber a and the azimuthal 
wavenumber n characterize the spiral form of the disturbance. For a spatially bounded 
disturbance, a must be real while azimuthal periodicity requires that rt be an integer. 
With a restricted to positive values the imaginary part of the complex wave speed c 
determines the stability (ci < 0 )  or instability (c i  > 0) of the basic flow. The condition 
cl = 0 corresponds to neutral stnbility. Using the solution form (5), the linear dis- 
turbance equations are reduced to 

(Gb) 
d v  V inp 1 ( 2p) ia(W-c)+- v +  -+- u+--- Lv+- = o ,  in'v] r ( d r  r )  r Re 

and 

( 6 4  
du u i nv  
-+-+-+iaw = 0, 
dr r r 

in which the differential operator L is defined by 
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The boundary conditions for the disturbance velocity components follow by imposing 
no-penetration and no-slip conditions at the cylinder walls. In terms of the complex 
amplitude functions of ( 5 ) ,  these are 

The equations (6) and boundary conditions (7) form a linear differential eigenvalue 
problem which will have a non-trivial solution only for certainvaluesof the parameters. 
The parameters a, c, n, Re and 7 appear explicitly while Ta and p are introduced 
through the tangential component of the basic velocity. To complete the stability 
analysis, it is necessary to determine the smallest value of the Taylor number 
Ta ,  = TU,(,U, R e , y )  such that for T a  > Ta,, the basic flow is unstable, that is, 
T a  > Ta,  implies ci > 0. 

2.3. Solution method 

The complexity of the eigenvalue problem makes it clear that only a numerical 
solution is practical. An obvious choice for a numerical procedure is the well-known 
initial-value method which has an established history in hydrodynamic stability 
problems (e.g. Sparrow, Munro & Jonsson 1964). Since this method requires values 
for all of the problem parameters, ultimately a search for particular combinations of 
these parameters is required to determine Ta,. 

In  order to employ standard integration routines, it is convenient to write equations 
(6) as a system of first-order equations. Moreover, to allow easy treatment of the 
axisymmetric case (n = 0 ) ,  the pressure variable is eliminated by a transformation 
due to Roberts (1 965). By letting 

equations (6) can be replaced by 

du u inv dv v d W  

d r .  r r dr 
- =  ----- iuzv, -& = -;+ Y ,  - = 2, 

i n V ]  u-- 2 r ]  - ( a2+- ;z) u-- 2inv 
dr r r2 ’ 

i a ( W - c ) + ~ ] v + ( ; i ; + - - ) u ] - ~  dV v 2inu 
r 

nuw i n X  + (012 + 2 g) v + + - , (9 e )  r 
and 

i a ( W - c ) + -  inv] W+-U yrV ] +-+ a; ( 2a2+T w+iaX-- .  z (9f) dr r r 

The general solution of the complex system ( 9 )  is a linear combination of six linearly 
independent solution vectors. However, the gcneral solution is not required since, by 
a judicious choice of initial conditions, it  is possible to numerically generate three 
linearly independent solutions which obey the boundary conditions (7a) .  If a linear 
cornhinibtion of tlicsc voctors is rccluiretl to satisfy tlic remaining c.ontlit,ions ( 7 b ) ,  thc 
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requirement for a non-trivial solution is the vanishing of a 3 x 3 determinant (DiPrima 
& Pridor 1979); symbolically 

(10) 

Since this determinant is complex-valued, two parameters must be selected as eigen- 
values. Convenient choices are the Taylor number T a  and wave speed c,.. Since a single 
geometry is considered and ci is fixed at  the neutral stability condition (ci = 0), the 
values of Ta and c, which satisfy the condition (10) will vary with p ,  Re, a and n; 
these values will be denoted by Ta* and c:. The linear stability limit Ta, is the 
minimum value of Ta* as a and n vary over the proper ranges, that is, it  is the 
minimum on a family of neutral stability curves. Mathematically, this condition is 
the product of successive minimization processes 

D(Ta, Re,,u, q, c, a, n) = 0. 

- 
Ta(n;,u, Re) = minTa*(a;n,,u, Re), 

Ta&, Re) = min Ta (n;p ,  Re). 

u>o 

- 

n = integer 
-- 

For each of the eigenvalue pairs (Ta, c,) and (Ta,, c,,), the corresponding values for 
a and n are identified in an obvious way. 

The first step in the solution procedure is the determination of the elements of the 
characteristic determinant ( 10). This step is accomplished by a fourth-order, variable 
step-size, Runge-Kutta integration with an imposed minimum of 100 steps over the 
unit integration interval. The computations were performed in double precision on a 
UNIVAC 1100/42 computer. Each evaluation of (10) requires three integrations of 
12 real first-order differential equations. At  r = l / ( l -q ) ,  the complex elements 
required in (10) are reformulated and the determinant is evaluated. The next step 
involves the simultaneous adjustment of Ta and c, so as to drive the determinant to 
zero. 

In order to initiate the computations, estimates for the eigenvalues are needed. 
Since, at  the start of this work, no applicable results for the stability of spiral Poiseuille 
flow relative to a general disturbance were available, some preliminary numerical work 
was required to obtain reliable initial estimates. They were obtained by advancing, 
in small increments of the parameters, from limiting cases available in the literature 
(Krueger & DiPrima 1964; Krneger et al. 1966). For an initial search with new extra- 
polated estimates for the eigenvalues the Box search method (Kuester & Mize 1973, 
p. 368) was used. This routine was found to iterate very consistently to the vicinity of 
(Ta*, c:). Once approximate values were determined, either the Muller method 
(Muller 1956) or a modified version of the method of steepest descent (Lance 1959) was 
used to achieve final convergence. Each of these methods had drawbacks. The Muller 
method was, in some cases, extremely sensitive to the initial estimate; this behaviour 
could not be predicted a priori. The modified method of steepest descent had a much 
slower rate of convergence. Successful determination of the eigenvalues was the result 
of considerable numerical experimentation. 

Completion of the process just described yields a single point on a neutral stability 
curve. The establishment of a complete curve requires that the process be repeated for 
various values of a. In  certain cases treated in this work, these curves were found to 
have inflection points but no evidence of the existence of more than a single minimum, 
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such as reported by DiPrima & Pridor (1979), was observed. In the neighbourhood 
of E, eigenvalues Ta* were determined for increments in a of 0.01. The smallest 
calculated value of Ta* was taken to be E. The process is next repeated for various 
integer values for n, providing a sequence of values for z. The minimum of this 
sequence is Ta,. While the method for determining TuL could be completely auto- 
mated, it is too subtle for convenient programming and the cost in computer time 
would be excessive. Therefore only (Ta*, c:) were determinedentirely on the computer. 

The numerical procedures and computer code were verified by comparison with 
selected results from the literature (Krueger & DiPrima 1964; Krueger et al. 1966; 
DiPrima & Pridor 1979). The agreement is quite good in all cases; the detailed com- 
parisons are available in Takeuchi (1979). A second verification is provided by a 
theoretical result due to Joseph & Munson (1970). They have shown, in the present 
notation, that 

Independent calculations of both sides of (13) showed agreement to the accuracy of 
the computer. 

Ta ,  (a,, n,) = TaL ( - a,, - nL). (13) 

3. Numerical results 
As a practical matter, it  is necessary to limit the ranges of the flow parameters for 

which the calculations are carried out. Since parallel numerical and experimental 
studies were performed, these ranges were influenced by the anticipated character of 
the instability. The experimental apparatus was designed on the premise that the 
instability phenomena of spiral Poiseuille flow would be similar to that of circular 
Couette flow up to Re = 200. The calculations were restricted to a narrower range, 
0 < Re < 100. In  addition to the usually treated case of a stationary outer cylinder 
(p = 0 ) ,  the values of p = -0.5 and 0.2 were chosen as representative values for 
counter rotation and co-rotation, respectively. The radius ratio 7 = 0-5 was chosen 
since, at  the start of this investigation, results for a wide-gap geometry were not 
available in the literature. 

With the physical parameters of the problem chosen, it is only necessary to establish 
the appropriate ranges for the wavenumbers a and n. The result ( 1  3) shows that it 
suffices to consider a > 0 so long as n is allowed to be both a positive and negative 
integer. There does not appear to be any theoretical way to exclude either negative or 
positive n for a general spiral flow. For spiral Poiseuille flow, Chung & Astill (1977) 
argue in favour of positive n by using experimental evidence (Snyder 1965) that the 
inclination of the disturbance spiral is opposite to that of the basic flow at the outer 
cylinder. In contrast, for the spiral flow formed by superimposing a rigid-body rotation 
on Hagen-Poiseuille flow, it  has been shown that negative n is pertinent (Maslowe 
1974; Mackrodt 1976). The same conclusion is drawn for a complicated spiral wake 
flow by Lessen, Singh & Paillet (1974). Since the arguments are persuasive in each 
case, the proper choice for n must be associated with some element of the basic flows. 
With this intcrpretation, the spiral flows treated by Alackrodt and Lessen ct nl. niiist 
have a coinnion featiire which is sonicliow different from that for s p i d  Poiseidle 
flow. While a precise determination of this feature has not been atteinpted, t'lie idcas 
of Joseph ( 1976, cliiL. 6) siiggest, iL coniicction with tlic \wll-kiio\vii RiLyIeigli criterion. 
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FIGURE 1 (a, b ) .  For legend see facing page. 
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Re 
3 20 40 60 80 100 

ralues !&(broken lines) and linear stability limit TaL (solid line) as a function 
rs identify values of the azimuthal wavenumber; (a) p = 0; ( b )  p = 0.2; ( c )  p = 

Re 
1 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

p = o  p = 0-2 p = -0.5 --- 
68-21 
70-67 
77-84 
86.82 
97.01 

102.6 
104.1 
102.7 
102.0 
99-50 
98.16 

3.17 0 
3-17 0 
3.19 0 
3.50 1 
3.54 1 
4-31 3 
3.95 3 
3.95 4 
4.02 5 
3-60 5 
3.24 5 

1.181 
1-180 
1-176 
1.469 
1.418 
1-787 
1.736 
1-834 
1.900 
1-875 
1-865 

124-8 
129.3 
142.5 
163.0 
166.6 
148.5 
128.7 
116.1 
106.1 
100.3 
96.57 

3.15 0 
3.15 0 
3-17 0 
3.20 0 
4-20 2 
4.11 3 
3-92 4 
3.84 5 
3.32 5 
2.93 5 
2.62 5 

1.181 
1-180 
1-177 
1-172 
2.215 
2-353 
2-388 
2-392 
2-296 
2.241 
2.208 

110-8 
107.8 
108.7 
106.2 
107.4 
111.4 
113.5 
116.0 
118.2 
119.2 
121.1 

4.07 1 
3.88 1 
3.63 1 
4.31 2 
4.05 2 
3.79 2 
4.51 3 
4.17 3 
4-70 4 
4.34 4 
4.02 4 

TABLE 1. Linear stability limit TaL and corresponding a L ,  nL, and C,L 

as a function of p and Re. 

9.498 
1-945 
1-548 
1.543 
1.457 
1-414 
1-445 
1-423 
1.452 
1-440 
1-434 

According to this criterion, the flows considered by Mackrodt and Lessen et al. have 
stable tangential velocity components while in the work of Chung & Astill, they are 
unstable. Thus a tentative conclusion is that the sense of the disturbance spiral (i.e. the 
sign of n) depends on the stability characteristics of the tangential component of the 
spiral flow. Since, in the present work, the chosen values of p all yield an uiwtable 
tangential component, this implies that n should be restricted to positive values. As a 
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test of this choice, the eigenvalues ( - n; p ,  Re) were compared with the eigenvalues 
Ta (n;p, Re) for n = 1, 2, p = 0 and Re = 1, 50, 100. The smallest eigenvalue corre- 
sponded to n > 0 in each case. 

With the parameters established, a large number of neutral stability curves were 
generated by the numerical procedures discussed in $2. With the help of these curves, 
the eigenvalues Ta(n;p, Re) were obtained. For the sake of completeness, all of the 
computed values of ?&(n;p, Re)? are shown in figure 1. These figures clarify the 
dependence of Ta, on n and clearly show that Ta, does not increase monotonically 
with Re for a general disturbance. In  each of the figures, the solid portions of the 
smooth curves give TaL as a function of Re. A significant feature is the continuous, 
but not smooth, nature of these solid curves. The dashed portions of the smooth 
curves represent solutions to the linear stability problem which are necessary solely 
to insure the proper selection of TaL. Table 1 lists Ta, and the corresponding values of 
crL, aL and n,. Complete results of this form, which clearly illustrate the importance 
of a systematic treatment of all pertinent values of n, have not been reported previously. 

The results for p = 0 and 0.2 (figures 1 a, b) show that, for small Reynolds number, 
the disturbance is toroidal (n = 0) .  On the other hand for p = - 0.5 (figure 1 c) the 
disturbance has a spiral form for all Re considered. Another common feature of the 
p = 0 and 0.2 cases is the stabilizing effect aa Re increases from zero. In  both cases this 
is followed by a decrease in stability, with the decrease for p = 0-2 quite pronounced. 
In  contrast, the counter-rotation caae of figure 1( c) shows a destabilization as Re 
increases from zero while for higher Re the trend is toward increased stability. 

t Tablcs of those values are available in Takcuchi (1979) or on request to the authors. 

- 
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Re 

10 
20 
50 

10 
20 
50 

10 
20 
50 

Present work Chung & Astill (1977) Hasoon & 
r A-, ,-pA-, Martin 

71 = 0 7E = 1 n = 2  n = O  n = 1 n = O  

Ta ‘I’U Ta 
70.67 t 75.22 105.8 7047 70 
77.8lt 79.30 96.32 77.90 75 

120.5 109.2 103.2 120.8 114.2 113 

- - - 

a a 
3-17? 3.37 4-14 3-19 
3-19? 3.43 4-21 3.074 
3-26 3.52 3.89 2.96 2.51 

- 
rr a, 

1.1sot 1-928 3.033 1.180 
1.176t 1.578 2.053 1.174 
1.158 1.391 1.598 1.15 1.48 

t Corresponds to TaL. 

TABLE 2. Comparison of present results with available results 
for p = 0 and 7 = 0-5. 

The results shown in figure 1 also serve to identify nL as a function of Re. With nL 
known, the proper values of a, and c,, can be selected from the calculated values of 
E and E,. The results for aL are shown in figure 2. The dashed and solid portions of the 
curves in these figures correspond to the dashed and solid portions of the curves in 
figure 1. Note that double values of a, and crL (i.e. non-simple eigenralues) correspond 
to  the discrete changes in nL. 

The variations of aL and crL with Re for /G = 0 and 0.2 exhibit similar general trends 
which are different from those forp = - 0.5. This pattern of similarity between results 
for ,u = 0 and 0.2 and contrasting results for ,u = -0.5 was observed earlier in the 
dependence of TaL on Re. 

The only available stability calculations for spiral Poiseuille flow in a geometry 
with 7 = 0.5, which overlap the parameters of the present study, are those of Hasoon & 
Martin (1977) and Chung & Astill (1977). These authors restrict the range for the 
azimuthal wavenumber and thus their eigenvalues do not, in all cases, correspond to 
the linear stability limit Ta,. However, a comparison can be made with the ‘inter- 
mediate ’ eigenvalues E .  In terms of the present notation, this comparison is presented 
in table 2. The axisymmetric results of Hasoon 8: Martin are based on the use of an 
averaged axial velocity distribution and are obtained by a Galerlrin method. Note 
that the present calculations for Ta yield higher values, with the difference increasing 
with Re. A similar difference is noted by DiPrima & Pridor (1979) for 7 = 0-95; they 
attribute it to the fact that the use of an averaged axial velocity profile is inappropriate. 
Hasoon & Martin do not give any results for a and c, that are pertinent to the present 
discussion. 

The numerical solution method of Chung & Astill (1977) is essentially equivalent to 
that of the present work up to the point of extracting the eigenvalues froin an eigenvalue 
detwminccnt. The fact. that R slightly different treatment of the initial-value problem 
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leads them to a 6 x 6 determinant rather than a 3 x 3 determinant is unimportant. 
The earlier comments show that the process of determining TaL requires careful 
implementation. The eigenvalue extraction process used by Chung & Astill is difficult 
to follow and appears to have been designed to obtain Ta, directly without the 
extensive intermediate calculations used here. Hence it was not possible to identify 
specific reasons for the limited agreement for n = 0 (note E) and the lack of agreement 
for n = 1 shown in table 2. A possibility is suggested by DiPrima & Pridor (1979) who 
compare their calculations for 7 = 0.95 and n = 0 with those of Chung & Astill. They 
note a similar limited agreement and suggest that, in some cases, the eigenvalues 
reported by Chung & Astill might not correspond to the minimum on a neutral 
stability ciirve. This thought is reinforced by the listing of ‘probable eigenvalues’ by 
Chung & Astill. Experience gained during the present work indicates that the mini- 
mization process becomes more delicate as n increases. This may be a contributing 
factor to the discrepancies for n = 1. 

An important comment can be made that bears on the overall validity of the calcu- 
lations performed by Chung & Astill. They assume that TaL increases monotonically 
with Re for all n and indeed it seems that this assumption is built into their eigenvalue 
iteration procedure. While there is ample theoretical evidence to support this assump- 
tion for n = 0, the present results (figure 1) all show that, for 7 = 0.5, the assumption 
is incorrect. Thus it seems clear that Chung & Astill failed, in some cases, to consider 
suficiently high azimuthal wavenumbers. 

4. Experimental apparatus and procedures 

4.1. Experimental apparutus 

The basis for the design of the experimental apparatus was the expected nature of the 
instability. It is known, from nonlinear theory (e.g. Davey 1962) that the result of 
linear instability for circular Couette flow is the establishment of an equilibrium 
configuration with finite amplitude that depends on Ta - Ta,. This important 
characteristic explains the success of relatively simple visualization experiments 
(Coles 1065) in verifying the linear stability predictions for circular Couette flow. For 
some unknown range of Re, it is reasonable to suppose that this characteristic is also 
present for spiral I’oiseuille flow in a wide-gap geometry. For the present work the 
assumption was made that this range would extend at least up to Re = 200. For such 
moderate Re, it  was anticipated that a successful experimental program could be 
based on aluminium-flake flow visualization. This technique affords a simple and 
economical means for the determination of the onset of instability. It also provides a 
way to examine the structure of the anticipated equilibrium configuration. 

An experimental apparatus with provision for inducing an axial flow in the annulus 
formed by concentric rotating cylinders was designed and constructed. A schematic 
diagram of the apparatus is shown in figure 3. 

The annular flow passage is formed by independently mounted and driven cylinders. 
Commercially available glass cylinders with nominal 4 inch inside diameters were used 
to fabricate the outer cylinder. Thus, for 11 = 0.5, the inner cylinder is required to have 
a diameter of 2 inches. To insure fully-developed axial and tangential velocity profiles, 
the Icngth of the flow passage was made as large as could be accommodated in the 
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FIGURE 3. Schematic diagram of experimental apparatus. 

available laboratory space. This length exceeds the maximum estimated entrance 
length (Sparrow & Lin 1964; Martin & Payne 1972) by a considerable margin. 

The outer cylinder is fabricated from several components which provide drive 
sections at either end and a transparent test section. The transparent portion of the 
outer cylinder consists of three 4-003 & 0.003 inch precision bore, borosilicate glass 
cylinders obtained from Fischer Porter and Company. Polycarbonate flanges were 
bonded to the ends of each cylinder and machined concentric to the inside bore. The 
two interior flange junctions are supported by ball bearings. The bearing support 
platforms are, in turn, attached to a vertical structural member. The combined 
length of the glass cylinders, and hence the useful length of the flow passage for 
risunlization purposes, is 102.50inches. Including the drive sections, the total length 
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of the outer cylinder is 115.25inches. In contrast, a simpler design was possible for 
the inner cylinder. It is a single-piece pump shaft 2.0000 f 0-0005inches in diameter. 
The experimental radius ratio is thus 0-4996 f 0-0004. 

To aid in alignment of the inner and outer cylinders, all bearing mounts possess 
adjusting mechanisms for 6 degrees of freedom. In addition, the upper-cylinder 
bearing supports are traverse mounted to allow runout determination following the 
completion of alignment procedures. The outer cylinder can be separated at any of its 
flanged connexions and the upper portion raised to provide access to the inner cylinder 
without affecting alignment. Both cylinders have slip connections to allow inner 
cylinder access and to compensate for thermal expansion. The final measured runout 
of the inner cylinder is O-012inches maximum at approximately its centre. The 
maximum runout of the bore of the outer cylinder is 04015inches. Including di- 
mensional tolerances, this gives a combined maximum gap variation of 1.7 yo. 

All cylinder drive components utilize timing belts and sprockets to eliminate 
rotation-rate variation due to slippage. The cylinder rotation-rates can be inde- 
pendently controlled with separate, variable-speed drive motors and controllers. For 
the results to be reported here, the cylinders were directly coupled for p = - 0.5 and 
0.2 and driven by a single motor and controller. Speed regulation is held to k 0.5 yo 
by incorporating a feedback control system. An electronic timer, controlled by micro- 
switches, provides a means of determining cylinder rotation-rates. 

The axial fluid flow is maintained by a gravity-feed, constant-head system as 
sketched in figure 3. Fluid is pumped from a reservoir into the upper head tank by a 
progressive cavity pump driven by a variable speed motor. A constant pressure head 
is maintained by a continuous flow over a weir assembly in the upper head tank. 
A manifold attaches directly to the upper head tank and distributes the fluid to the 
inlet plenum through four flexible tubes. The inlet plenum incorporates a screen and 
flow straightener to aid the establishment of a circumferentially uniform flow. The 
fluid enters the annular 00w passage through a smooth entry bell, flows down the 
annulus, and into an exit plenum. It then flows through four flexible tubes into a 
collector. Provisions for temperature measurcments are incorporated into the entrance 
manifold and exit collector. The fluid flows from the collector through a flow-regu- 
lating valve, a flow meter and into the bottom of the lower head tank. The flow meter 
serves only as u visual indicator to aid in valve adjustments. Overflow from the lower 
head tank is returned to the reservoir through the flow measurement system. A 
precision bore graduatedcylinder collects the fluid for a timed volumetric measurement. 

A silicone oil (Dow Corning 200 fluid) was selected as the working fluid because of its 
chemical inertness and stable kinematic viscosity. A nominal value for v of 10 centi- 
stokes was found to be suitable for the ranges of parameters considered. The actual 
value of v depends on the fluid temperature. This dependence was obtained with a 
Saybold Universal Viscometer to an accuracy of 0.5% over the range of operating 
temperatures. Temperatures were determined by ASTM thermometers with a smallest 
scale division of 0-05 F". For the purpose of flow visualization, aluminium powder was 
added to the silicone oil after straining through a screen with a mesh opening of 
0.0029 inches. The addition of the aluminium powder caused no detectable clinnge in I?. 
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4.2. Experimental procedures 
The first phase of the experimental effort focused on the determination of the critical 
Tllylor number Ta, corresponding to the observed onset of instability. For given y ,  its 
value depends on Re. Thus it is necessary to measure three quantities: the angular 
speed of the inner cylinder at  the onset of instability Q1,, the volume flow rate Q, and 
the fluid temperature. With these quantities known, 

a,, (b  - a)2 Ta, = 
V 

and 
Q 

7T(b+U)Y'  
Re = 

It is expected that, up to some unknown value of Re, Ta, will equal Ta,. The second 
phase consisted of measurements of the axial wavelength and angle of inclination of 
the expected equilibrium wave form. These measurements lead to  the critical wave- 
numbers ctc and n,. 

Critical Taylor number. The definition of a criterion for the onset of instability 
followed some preliminary observations. For the special case Re = 0, the initial signs 
of instability are observed in the central portion of the test section. A small increase in 
Q, then results in a vortex structure along the entire length of the test section. Due to 
the presence of suspended aluminium flakes, this structure is characterized by alter- 
nate light and dark bands (Coles 1965). For low Reynolds numbers, the vortex develop- 
ment is similar. For higher Re, however, the upstream propagation of disturbances is 
apparently inhibited and a vortex structure along the entire length of the test section 
mas not observed. In  these cases, a stable vortex structure fills the lower portion of the 
test section while a region at  the start of the test section remains void of visible 
disturbances. With further increases in R,, it  was possible to increase the length of the 
vortex structure. A sequence of the observed states is shown schematically in figure 4. 

Based on the preliminary observations and the supposition that developing spiral 
Poiseuille flow is more stable than the fully-developed ba.sic flow (Martin & Hasoon 
1976), the critical condition is defined as the occurrence of a persistent vortex structure 
which fills the test section downstream of the general region in which a disturbance is first 
observed. In general, as Re increases, the length of this vortex structure decreases until, 
at sufficiently high Re, vortices are first observed near the exit of the test section. 

Following the definition of the stability criterion, the experiments were carried out 
for the previously chosen values of p and 0 < Re < 150. With the value of p fixed, Re 
is set to the desired value by adjusting the flow control valve. Then a, is set at a value 
somewhat lower than the anticipated critical value and increased in small steps. It was 
found that the specified 0.5 yo accuracy of speed control is not attained without a 
warm-up period of approximately 1h. Due to the normal vertical temperature 
gradient in the laboratory, considerable temperature drift is observed following a cold 
start. Approximately 2 h are required for the apparatus to attain temperature equi- 
librium. Once speed regulation and thermal equilibrium have been established, the 
test sequence proceeds with flow rate and temperature measurements at  each value 
of 0,. The average temperature between the entrance manifold and exit collector was 
used to determine v. A t  thermal equilibrium, the temperature at these locations 
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FIGURE 4. Sequence of observed states: (a) low Re, n, = Qlc; (b) intermediate Re, a, = ale; 
(c) high Re, 0, = ale; ( d )  same Re as (c), 0, > ale. 

differed by at  most 0.1 F", except for the lowest Re. Incremental increases in 0, were 
generally held to less than 1 % of the expected critical value. The measured values of 
ill are estimated to have an uncertainty of 0-5 %; the uncertainty in Q is estimated to 
be 1-7 "/o. The total uncertainties in Ta, and Re are then computed as 1.0 % and 1.8 yo, 
respectively. The reproducibility of QlC was tested by repeating selected data points 
and by using an alternate procedure with a,, approached from above. In all cases, SZ,, 
was found to be reproducible within the experimental uncertainty. 

The stability criterion is adequate only if natural convection effects are not present. 
It was found that these effects are troublesome only at very low Re or if thermal 
equilibrium of the apparatus has not been achieved. For the great majority of the data 
taken, the basic axial velocity dominates any convection-induced velocity so that the 
influence of natural convection is insignificant. The occurrence of such effects was 
esLsily recognized since the resulting disturbances had a constantly changing wave 
form and would appear a t  values of Q, much lower than the expected critical value. 

C'riticul wuve form. The critical vortex structure can be toroidal or spiral, depending 
on the value of Re. Experimentally this structure can be characterized by an axial 
wuvelength s and an angle of inclination relative to the horizontal $-c. These quantities 
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FIGURE 5 (a, a). For legend see next page. 

lead to a, and n,. Ideally, up to some unknown value of Re, a, = aL and no = n,. The 
original idea was to base $, and s measurements on photographs of the critical wave 
form. However, it was very difficult to obtain adequate photographs. At low and 
intermediate Reynolds number, an increase in Q, above a,, was required to increase 
the intensity, and hence the resolution, of the vortex wave form. A similar increase was 
necessary a t  high Reynolds number, where vortices are first observed at the exit of 
the test section, to ensure both adequate resolution andvisible lengthof the waveform. 
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FIGURE 5. Comparison of Ta, and TaL (solid line); (a)  /I = 0 (0, ‘shortened’ apparatus; 

see $6); (b)  /I = 0.2; (c) p = 0.5. 

Since $, and s could not be conveniently determined at Q,,, photographs were taken 
at a, = 1.05 Q,. A similar approach was used by Snyder (1962). For a given p, Ta, 
was determined for the entire range of Re; this was followed by the independent 
determination of $, and 8 over a smaller range, 0 < Re < 100. 

Axial wavelengths were measured from the photographs. To eliminate errors due to 
camera-lens distortion, measurements were referenced to a scale included in each 
photograph. The estimated uncertainty for the corresponding axial wavenumber 
a, = 2n/s is 3.0 %. In  some cases, the angles of inclination are not discernible in the 
photographs, even for Q, = 1-05QlC. Rather than increase Q, further, angles were 
measured directly with an adjustable protractor. The corresponding azimuthal 
wavenumber is 

2b 
n, = - tan$,. 

S 

The estimated uncertainty in n, is f 1. 
Some preliminary observations of the wave forms at Q, = 1.05 a,, showed that they 

are not, in all cases, reproducible within the experimental uncertainty. Hence the lack 
of repeatibility of $, and s can be attributed to a small measurement error and a 
possibly large variation due to non-reproducibility of the wave form. 

5. Experimental results and comparisons 
The experiments to determine Ta, were carried out to Re = 150. This range was 

sufficient to test the predictions and establish the values of Re for which Ta, = Tn,. 
Experirnontal results are shown in figure 6 along with the corresponding predictions 
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/I = 0 p = 0.2 ,U = -0.5 
r h \-I 

Re Ta,, Re TaC Re TaC 

0 68.6 0 112.6 0 11 2.4 
4.2 69.4 8.3 128.7 5.7 112-7 

10.2 70.4 15.2 136.3 15.2 111.4 
14.0 73.4 19.9 141.9 30.9 110.6 
19.7 77.7 23.6 149.1 40.0 111.9 
25-9 84-7 26.8 15'7.1 47.6 116.2 
30-6 88.2 29.3 163-8 51-7 117.2 
35.3 90- 1 32.3 165-7 58-5 119.8 
40.0 95.7 35.5 168.9 64.6 122.0 
43.9 100.4 39.6 168.3 71.5 123-0 
46.8 104-5 45.3 166.0 78.4 125.8 
53.1 107.5 47-6 160.1 84.8 124-3 
59.5 108.2 50.8 152.0 91.9 125.4 
66.2 110.8 54-1 147.1 100.8 127.7 
73.2 109.6 57.2 143.5 113-1 129.8 
78-0 110.5 63.3 132.9 124.0 129.2 
85.4 11 1.3 70.4 128-3 131.5 129.2 
92.4 109.6 78-0 124.1 136.4 130.7 
98.7 110.5 88.4 116.2 145.8 131.3 

106.2 109.6 99.1 111.7 
120-5 107.8 108.8 106.6 
132.5 106.5 118.3 102.1 
145.4 105-2 128.9 100-6 

142.7 97.7 

TABLE 3. Critical Taylor number Ta,  as a function of p and Re. 

50 I. 
RL' 

FIGURE 6(a). For legend see next page. 



The stability of spiral Poisezcille Jlow 121 

3 

50 

30 

10 

L‘”’ 
t 4, i 

0 
0 

0 10 30 50 70 90 
Re 

I I I I 1 I 1 I I 1 1 
0 10 30 50 70 90 

Re 

FIGURE 6. Comparison of $c and @L (solid line) (in degrees). The integers identify values of 
the azimuthal wavenumber; (a) ,u = 0 ;  (b )  p = 0.2; (c) p = -0.5. 

for TU,~.  These results are tabulated in table 3. For ,u = 0, agreement between Ta, and 
Tu, extends to approximately Re = 40. Above this value, Ta, is greater than Ta, 
with the discrepancy increasing slightly with Re. Similar behaviour is noted for 
,u = 0.2 despite the large difference in the predictions for ,u = 0 and 0.2. In  contrast, 
for ,u = - 0.5, Tu, is consistently above TuI,. Despite the markedly different behaviour 
of Tu, with Re for the values ofp considered, the correct trends are indicated by Ta,. In 
addition, there is a strong resemblance between the experimental results and 
‘ scalloped ’ nature of the predicted curves. While there are no experimental results 
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- 

- 
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Re 
0 

9.4 
23.7 
29.4 
35.7 
39.6 
45.5 
49.7 
54.9 
60.3 
65.3 
65.9 
71.5 
71.8 

92.1 
80.3 

@c "0 

0 3.24 0 

0 3.24 0 
0 3-24 0 
9.0 3.59 0.72 
7.6 4.19 0.71 
8.0 3-87 0.69 

11.3 3.59 0.91 
16.6 4-57 1-73 
19.0 4.19 1-84 
24.6 4.37 2-55 
23.0 5.03 2.72 
26.0 4.57 2-83 
29-0 4.79 3.38 
30.0 4.79 3.52 
31.3 4-37 3.38 
37.3 4.37 4.24 

Re 
0 

10.0 
19.9 - 
29.6 
32.3 
34.2 
39.3 
45.4 
50.4 
60.4 
69.7 
78.1 
90.4 
97.7 

@c a0 n c  Re fj-0 a0 n, 
0 3.14 0 0 7.5 4.19 0.70 
0 3.35 0 14.1 9.0 4-57 0.92 
0 3.14 0 15.2 9.0 4-67 0.92 
0 3.35 0 16.0 6.5 5.29 0.77 
9.0 3.14 0.63 24.9 12.0 4.19 1.13 
6.2 4-57 0.63 35.3 20.5 4.56 2-18 

17.8 3.87 1.58 54.9 19.9 4-19 1.93 
28-0 4.19 2.84 65.3 24.0 4-79 2.71 
33.0 4.19 3.46 65.7 27.0 6.59 3.62 
35.2 3.87 3-47 73.6 27.2 4.79 3.13 
39.0 3.87 3.99 74.7 27.3 5.03 3.30 
42.8 4.19 4-94 86.3 26.4 5.29 3-34 
45.0 3.59 4.57 95.3 29.5 5.03 3-02 

17.2 4-19 1.65 45.6 19.4 4.19 1-88 

TABLE 4. Experimental results for @c (degrees), a,, and n, as a function of p and Re. 

5 
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available for a direct comparison, the present results for p = 0 seem consistent with 
similar results reported for 7 = 0.96 (Snyder 1965) and 7 = 0.77 (Mavec 1973). 

Since there is an increasing difference between Ta, and Ta, as Re increases, the 
waTe-form experiments were performed only for Re < 100. The experimentally 
determined II., are shown in figure 6. These figures also display a predicted angle @z 
which is calculated by means of (16). The occurrence of a change in the critical wave 
form from a toroidal to a spiral structure is clearly shown forp = 0 and 0.2. A different 
behaviour is observed for ,u = - 0.5 with a spiral structure present for all Re. These 
observations are in agreement with the predictions. Although the experimental 
results are consistently lower, trends are verified in all cases. Figure 7 displays the 
experimentally determined a, and the corresponding a,. Overall trends are again 
verified although the experimental data generally lies above the predictions. Both $, 
and a, show considerable local excursions from the predictions and discrete changes 
corresponding to changes in n, are not discernible. The experimental results for +c 

and ac are tabulated together with the calculated n, in table 4. 

6. Discussion and conclusions 
A reasonable extrapolation from the available results is that, for a wide gap, spiral 

Poiseuille flow would first exhibit instability above the linear stability limit for the 
range of Re considered. The predictions from linear stability theory and results of flow 
visualization experiments can be expected to agree if, in addition, instability leads to 
an equilibrium amplitude which can be observed slightly above the linear stability 
limit. While an equilibrium amplitude was always observed in the present work, its 
appearance was, in some cases, delayed until T a  was increased above TaL by a signifi- 
cant amount. This increase depends on Re and p and exhibits a systematic behaviour. 
Since what is observed in experiments is finite behaviour, only a nonlinear theory can 
be expected to completely explain these observations. Although an appropriate non- 
linear. analysis is not available, reasons for the limited agreement between theory and 

-experiment can be suggested. These reasons are most plausible for p = 0 and 0.2; 
similar influences should also be present for p = -0.5, but they are not as readily 
apparent. It is clear that the choice of positive azimuthal wavenumbers cannot explain 
the difference between Ta, and Ta,. If negative values for n were relevant, still lower 
values for Ta, would result (see (1 2)), thereby increasing the difference. 

The most attractive explanation for the difference between Ta, and Ta, at high Re 
is the existence of a vortex development length, beyond the hydrodynamic entrance 
length. The vortex development length is the length needed for a moving disturbance 
to reach an amplitude that is observable by the visualization method. Since the 
portion of the test section available for this purpose decreases as Re increases (see 
figure 4), disturbances may leave the test section before reaching the threshold 
amplitude. When this limiting condition is reached, Ta ,  must be increased above the 
value that would be appropriate in a longer apparatus in order to have an observable 
disturbance within the test section. When this occurs, Ta, can be expected to be 
greater than Ta,. In  order to verify this idea, the apparatus was artificially shortened 
by masking the lower half of the test section and performing the experiments for 
,u = 0. These results are included in figure €i(a). A comparison of the results for the 
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complete and ‘shortened’ apparatus clearly show the expected increase in Ta, as the 
length of the apparatus is reduced. 

Another factor which influences the determination of Ta, can be attributed to the 
apparatus design and the slopes of the Ta, vu8. Re curves. The apparatus W&B designed 
to impose a constant pressure drop across the test section. Thus, once a vortex structure 
appears, the axial flow rate must decrease. For a negative slope (dTaL/dRe < 0) this 
decrease moves the flow state toward a stable region and tends to delay the develop- 
ment of an observable disturbance amplitude, This implies that the flow visualization 
procedure is hindered for negative slopes. Unfortunately, the relative importance of 
this effect cannot be established since its results cannot be separated from those 
associated with the vortex development length. However, it is interesting to note the 
degree of correlation in figures 5 (a) and 5 (b) between disagreement and the existence 
of negative slopes. 

The most significant feature of the comparison between the observed and predicted 
wave forms is the local excursions in the experimental data from overall trends. 
A possible explanation for this behaviour is suggested by experimental results due to 
Snyder (1969) who showed that, for unstable circular Couette flow, the observed wave 
form is uniquely determined by the initial conditions slightly below TuL. In  the 
present work, the initial conditions for the determination of 11, and a, were established 
at a state below Ta,. In view of the behaviour of Ta, and TuL, in some cases, this initial 
state was, in fact, above Ta,. This situation may have affected the observed wave form. 
It is difficult to draw a definite conclusion because of the likely existence of additional 
complications due to the spiral form of the secondary flow. This thought is supported 
by the agreement shown in figures 7 (a) and 7 (b) for n = 0. 

For a limited range of Re, the applicability of linear stability theory in determining 
the conditions for the onset of a non-axisymmetric secondary flow has been demon- 
strated for spiral Poiseuille flow in a wide-gap geometry. Detailed comparisons of the 
corresponding wavenumbers have been somewhat less successful, but general trends 
are in agreement. The existence of the vortex development length implies that the 
linear theory has an even greater range of applicability than demonstrated here. 
However the experimental determination of this range is hampered by serious diffi- 
culties in fabricating a sufficiently long test section for a wide-gap geometry. If the 
apparatus length does have an influence on the vortex development process, it can 
be concluded that a nonlinear analysis is necessary to determine the conditions under 
which a vortex structure will be observed. 

It is a sincere pleasure to acknowledge the substantial contributions of Mr Frank 
Hombaker in the construction of the experimental apparatus. Professor R. C. DiPrima 
kindly provided a pre-publication copy of his paper. This work was supported in part 
(U. F. J.) by a grant from the University Grants Committee of Arizona State University. 
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